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CHAPTER I

INTRODUCTION

The design of a decentralized control scheme for a large scale

j system will, in the formulation of the problem, generally take advantage

of some aspect of the structure of the system [16,17,18) or the problem

may be formulated so that a desired structure is imposed on tbasystem, e.g.,

[19,20,21,12].

Controller are generally implemented in some form of state feed-

back. Since many aspects of the system structure are variant under the

control actions, the dependence of the decentralized control schemes on the

I. structure maker many of the schemes crucially dependent on a uniformity of

the goals of the individual decision makers.

In many situations, the individual decision makers will have

different goals and it may be infeasible to have cooperation in agreeing on

a commion, single goal. So, given that there may exist multiple goals, it

IL is of interest to analyze the decentralized control problem in this setting.

We will examine issues arising from the presence of conflicting

goals among the decentralized controllers. The rational behavior of the

controller is characterized by a strategy defining the rules of their

behavior. Of primary interest to us will be the role that the Stackelberg

* strategy can play in the deceir ralized control problem and a number of

conceptual issues that arise in attempting to make use of the strategy.

The Stackelberg strategy is well suited for use in designing a

coordination scheme where there are many controllers acting on the system,

each with a different criterion to be optimized. There are, however, some
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issues regarding the strategy which have yet to be resolved. Among these

are the fact that the principle of optimality does not in general hold and

its imposition for the continuous time case has yet to be satisfactorily

dealt with. Also, unlike the classic single criterion linear quadratic

problem, a closed form solution satisfying the necessary conditions or a

satisfactory numerical solution technique have yet to be developed. in

Chapter 2 we develop a sampled data equilibrium strategy which provides

a computationally tractable solution technique.

This coordination technique is prescriptive, i.e., if a solution-

exists, it provides the methodology for calculating it. The existence of

a solution is not assured. In an effort to establish conditions under

which we can insure the existence of a solution satisfying the Stackelberg

strategy, Chapter 3 will examine a very basic form of the Stackelberg

strategy for dynamic games and sufficient conditions for the existence of a

stabilizing solution will be developed. We restrict our attention to a

formulation dealing with a linear continuous time system and in which the

control laws are constrained to be linear state feedback. For this class

of problems we are able to rely on the concepts of linear algebra to analyze I
the interaction of the individual decision maker's controllable and observ-

able subspaces. By so doing we establish sufficient conditions under which

the existence of a stabilizing solution can be assured.

Another form of the Stackelberg strategy will be seen in the

remaining chapters, entering into the design of an information structure.

The problem considered is one in which there are many controllers acting[

on a system where each controller has a different objective and their controls

NO +1k
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are determined according to the Nash equilibrium strategy. An example

demonstrating the impact of the information structure is considered in

Chapter 4. This is an example of a situation in which the availability

of more information to one of the controllers has the effect of making

* that controller worse off. The demonstrated impact of the information struc-

* ture in the example serves as motivation for the information structure

design scheme of the next chapter.

In Chapter 5 we consider the design of an improved information

structure by a somewhat unsuspected use of the Stabkelberg strategy. An

iterative procedure is developed by which the information structure is

altered to improve the overall system performance. The advantages inherent

in the precedence nature of decision making under the Stackelberg strategy

will be seen in this formulation.

AL
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CHAPTER 2

SAMPLED DATA EQUILIBRIUM STACKELBERG COORDINATION

2.1. Introduction

in this section, we consider the problem of formulating a

hierarchical control structure for a multicontroller problem using the

differential game concept of an equilibrium Stackelberg strategy. It is

assumed that in general each agent has a different objective function and

that one agent, the coordinator and Stackelberg leader, has an overall

objective function.

There have been numerous investigations recently into the useful-

ness and characteristics of the Stackelberg strategy applied to dynamic

systems [1-11]. In particular, the use of the Stackelberg strategy for the

coordination of many agents has been considered in [4] and [11].

A form of periodic coordination has been considered by Chong and

Athans (12] in which the vertical communication in the hierarchy is con-

strained to be periodic. Our basic assumptions are different from those of

[12] and subsequently the nature of the solutions are quite dissimilar.

With a Stackelberg strategy, we assure it is known that one player,

the coordinator and Stackelberg leader, will determine his controls before

any of the other players (followers or lower level decisionmakers). The

lower level decisionmakers then perform their optimization subject to their

knowledge of the coordinator's decision, that is, they are res.ing LO his

decision. The followers act simultaneously and we consider the case when

they play a Nash strategy among themselves. The leader performs his

optimization subject to the expected reactions of the followers. The leader's
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I
I ability to make decisions first, taking into account the reactions of the

lower level decisionmakers, enables him, to a degree, to impose his

I criterion onto the other controllers.

.- This strategy is appropriate for imposing a control structure

on a problem in which there are many decision makers with different

criteria unable or unwilling to cooperate in their decision making process

and in which a hierarchy of decision making already exists or can be

imposed.

The solution of the closed loop Stackelberg problem generally

depends on the length of the interval over which the problem is defined as

well as the state of the system at the initial time [8]. Implicit in the

solution is a guarantee by the leader that he will not deviate from his

1 announced control rule. If the problem is redefined on a subinterval of

1 the time interval of the original problem, the solutions on this interval

would in general be different. Thus, the principle of optimality does not,

T in general, hold.

The feedback Stackelberg strategy is defined as a closed loop

I. Stackelberg strategy which has the added constraint that the leader's control

is required to satisfy the principle of optimality [8]. Generalization to

equilibrium Stackelberg strategies is introduced in [7]. Further discussion

*of the Nash and Stackelberg strategies for dynamic games can be found in

the references.

The open loop, closed loop, feedback and sampled data Stackelberg

strategies exhibit notably different characteristics due to the fact that

they are based on fundamentally different problem formulations. In order

I
Ii
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to see the motivation and significance of the sampled data formulation it

is necessary to appreciate two particular aspects of the continuous time

Stackelberg prob lema.

First, as described above, the solution of the closed loop

Stackelberg problem for dynamic games does not, in general, satisfy the

principle of optimality. The imposition of the principle of optimality for

discrete time games has been considered in [8] while the procedure for doing

this for continuous time games has yet to be resolved. V
A second peculiarity of the closed loop Stackelberg problem is

that, unlike the classic single agent, linear quadratic control problem, or

even certain multicontroller problems, the necessary conditions derived by

the variational technique for the linear quadratic, continuous time, closed

loop Stackelberg problem result in a nonlinear control, the existence of L

which is not assured [6], [16].

With these aspects of the continuous time Stackelberg problem in

mind, the significance of the sampled data formulation is apparent. That

is, the resultant control laws are piecewise continuous linear time varying

functions of the measurements for the linear quadratic case and, as we have

formulated it, the principle of optimality holds at the sampling times.

Recent work on the Stackelberg strategy for continuous time dynamic

systems has concentrated primarily on the open loop formulation [4] and on

the linearly constrained closed loop formulation [6]. For the linear 1
quadratic case, the open loop solution is a linear function of the initial

condition and the solution in [6] is linear by construction but the

principle of optimality does not, in general, hold. The linear form of the

7 7
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sampled data solution is a direct result of this information constraint and

is not due to any structural (linear) constraint being imposed on the form

jof the solution.

By considering the sampled data formulation we have been able to

obtain a responsive state feedback solution, which is tractable, has a

very simple form for implementation, and for which the principle of optima-

lity holds at the sampling times. Of equal importance is the existence of

an efficient algorithm for the calculation of this solution. In this chapter

we derive a computationally efficient technique for obtaining the solution

for the linear quadratic sampled data equilibrium Stackelberg strategy.

The solution algorithm tends (i) to minimize the on-line computations and

(ii) to take advantage of the nature of the sampled data solution to greatly

reduce the horizon over which integrations must be performed, thereby

reducing off-line computations as well. These features are obtained as a

result of employing a form of invariant imbedding [13].

[In Section 2.2 we formulate the problem and present necessary

conditions for the solution. The linear quadratic case will be considered

in Section 2.3 and techniques for the solution of the linear quadratic case

will be discussed in Section 2.4. Section 2.5 summarizes the results.

2.2. Sampled Data Equilibrium Stackelberg Formulation

Consider the system

*KZ(x,ui;iO,l,...,m), X(to) OX, (2.1)

r 
0

u tR , x E n , where rI is the dimension of the ith control vector. Each

lower level control, uj , for il...,m, is chosen to reduce as much as

I.
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possible the scalar index

tf

J inKif(X(tf))+j Li(xuj ;J -0,1,...,m)dt. (2.2)
0

The coordinator's control, u0 , is chosen to reduce as much as possible

the scalar index

JO = KOf((t))+J LO(XUi;i O,1,...,m)dt. (2.3)

t

The terminal time, tf, is fixed.

The information is assumed to be in the form of saapled data

acquisition, that is, measurements are taken at r discrete instances in

time £tiE[totf),iO,l,...,r-lI. The controls will be functions of time

and the latest state measurement, i.e., u -u i (t x j ) for t i t <t j+19 for

all i, where xj x(tj). i

The leader will calculate and announce u0 (t,xj) for t E[tjptj+l) ,s

and j -O,1,...,r-1 at the beginning of the game. This control is chosen

to minimize the leader's performance index under the assumption that the

followers will in turn be minimizing their respective performance indices

subject to the announced leader's control, and subject to the requirement U
that the leader's control remains optimal for any game starting at tj,

j -O,l,...,r-. The controls are calculated based on the assumption that

future measurements will be available at tk, k -J+I,...,r-1.

In contrast to the single controller case or even certain multi-

controller strategies, the Stackelberg controls including sampled data I
closed loop control do not in general satisfy the principle of optimality

(8]. In this section we derive necessary conditions for sampled data

Vi
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equilibrium Stackelberg strategies whereby the principle of optimality is

imposed at the sampling times tj, j =O,l,...,r-l.

Let the optimum costs to go at time tj be denoted by Vi(x(t ),t

i -0,1,...,m. Imposing the principle of optimality we have
t* =x min (V* (xj , tj ) + J+ Li (XU;k=,01,... ,m)dt) (2.4)

Vi(xiUtj) ui t Jj(2.4)

where

Vi(x(tf),tf)iKf(x(tf)), il,01...,m (2.5)

and where the minimization with respect to ui in (2.4) is subject to the

system constraint and to the minimization being performed by the other

controllers according to the strategy outlined in the preceding paragraphs.

Note that the optimizations of the future periods are imbedded in the term

Vi(xj+ltj+). Also notice that at sample time tj, all controls from tj

through tf will, in principle, be calculated and that they are independent

of any control action prior to tj except for the effect of xj. So, by the

nature of the problem formulation, the solution will satisfy the principle

of optimality at the sampling times. This aspect of the sampled data

formulation is analogous to the feedback formulations of [8], or the

equilibrium formulation [7].

The variational method is applied to (2.1), (2.4), and (2.5), to

obtain the necessary conditions. These conditions are an extension of those

derived in [11). The necessary conditions for the followers on [tj,tJ+ l)

for i,,l,...,m are

i f(x,ui; i-0,l,...,m), X(t )Wxj (2.6)

I
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i+J t~)
p ;i P t J+I)' - )X(t J+i) (2.7)

0 - __(2.8)

where uI

(2.9)

The necessary conditions for the leader on [tjst J+i) are

±O_ t 0(xJt1),ti~i) - k(x(t l +l))
()Xk-i Jtj) ~l (Ct l) 2 (2.10)

api L 1
where Y (r -Ltim Yi(t) for Yi defined on the (J-1)st interval [t,t)

Y t Y p t) defined on the jth interval [t ,t ). L-

6u 2.0 (2.12) i
0

6HI

where

+ %I f (Xui; i - 0, 1...M) + F- IY'(- - + kI~)'] (2.14)k- k1 k 3
Equation (2.13) and the constraints appended under the sunmation

sign in (2.14) are due to the leader taking into account the reactions of

the lower level decisionmakers. The solution conditions on the $Sk are

~i k-



implicit in equation (2.13).

2.3. The Linear Quadratic Case

Assume the system is linear

m
k -Ax + E 0B u1 (2.15)

x(t 0 X (2.16)

and the criteria quadratic

J~ -Ix2'K xi J(Qx j~uj~ijuj)dt. (2.17)
ttf 0

The necessary conditions for the lower level controllers for

* t~rti3tj+1) and i-l,...,m are

M~ -Qi A'pi, P! ('j+Q- - V()x(t +) %+~ (2.18)

U,=R iiBjpi. (2.19)

L~i The necessary conditions for the leader are

-Q x- A'%+ ZQ
0 i-luiy

W* (Xt2 * (Xt(2.20)
0't~1  J+1tj+ ) - - i Yjl~t;jj)

Y 1 01 Y AY S0 ±pi+S±X Y t(+)-0 (.1

u -*-R B1% (2.22)
o Oo oo

where

i
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s i  Bi. B. I~s .J

S B R1 R1 B '.
ii Ji ,

During each interval, the state will evolve according to

m
-Ax - ilSipi - Sol (2.23)

for t E[tjst+ 1 ) where x(tj) is determined in the previous interval.

If the state measurements are made at r discrete instances in

time, we are faced with an (r+L)-point boundary value problem. At this

stage, there are two alternate approaches we can take to the problem. The

first and standard approach starts by assuming an explicit functional

dependence of the costates on the state. This results in a set of coupled

matrix Riccati equations which must be solved repeatedly at each sample

time. A general algorithm for the efficient solution of these equations for

each new set of boundary conditions will be outlined in the next section. "

We will also consider an even more efficient approach utilizing invariant

imbedding [13,14]. It is based on an assumption of the functional dependence

of the state and costates on one another and of their explicit dependence I
on their respective boundary conditions. This result will be shown in

detail.

2.4. Solution of the Linear Quadratic Problem

The first approach to dealing with the r+l point boundary value

problem starts by assuming that the costates depend on the states by affine

functions. The affine dependence, rather than simply linear, is necessary

so that the lower level decisionmakers will be able to calculate their

' W4
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controls as functions of the leader's announced control, i.e., their compu-

tations will be coupled to the leader's sequentially, not simultaneously.

Differential equations can be found for the coefficients of these

functions and for the associated costs to go. If m is the number of con-

trollers, the problem can be reduced to that of solving m coupled matrix

Riccati equations and m matrix Lyapunov equations at each sample time, all

with boundary conditions at a coimmon time. The same set of equations are

resolved at each sample time with only a change in the boundary conditions.

A sampled data Nash formulation has been considered by Simaan and Cruz [91

and a computational technique for the solution of the resultant Riccati

equations has also been obtained [10]. We have obtained a generalization

of [10] in which the solutions of the Riccati equations are expressed in

terms of a preliminary solution due to a specific set of boundary conditions

and a correction term dependent on the actual boundary conditions. An

algorithm is found for finding these correction terms requiring the solution

of m uncoupled matrix Riccati equations, thus providing substantial improve-

ment over a brute force solution of the coupled equations.

With the first technique, we assume that the cost to go functions

are of the form

Vli(t) - (x 'El1X+eli'x+q

I. V2 (t) -(. x'E2 x+ ex+q2 )It

[in which case, the boundary conditions in (18) and (20) are

Pi(tj+l) (Elx+e l tj+
I and

!
!

- 2- ..:,A "+, 1: .. -+41__ __ _
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X(tJ+) - ( 2 + e2 - i E liY I tJ+ 1

As is conventionally done in solving the two point boundary

value problems in optimal control, we assume a functional dependence of the

costates on the state. An affine dependence is assumed due to the nature

of the Stackelberg problem. Thus we assume

Pi UK li x + gli

Yi UK 3 x + g31 (2.24)

X -K2x + g2"

By differentiation of these equations and from the equations of

section 3, we find that the K matrices and g vectors must satisfy

m
iU - Q li -A'KIi - K iA+ Ki [ jZiSIjKj +S 2 K2 I,9Ki(ti+4 ) =E I (tj+ l)

m
iii , "AI gli + llij -01jglj + S2g2]'gli(tj+l) ,Pli (tj+ 1)

m 
m

2 =-Q2 -A'K2 -K2A + ijuQu 3iK + 3 i-+ El l i + s2Kz2

m
K2 (t J+l) "P2 (t 

j+ ) - iEIPli (tJ+ 1 )K3 i (t
J+ l)

m U

92 a -A' g2 + K 2 i= S ligli + K 2 S2 82 
+ imQlig3i

m

g2 (t J+) "P2 (tj+l ) " i'll (tj+l) g31 
(t + l)

m

131 -Ag 3 1 - S2 , -i 
+ Slg2  

+ K 31jSiJgl J + $292 3

K31 (t+) -0, g3i(t +) -0 (2.25)

The coefficients in the cost to go functions must, in each

interval, satisfy the following equations



m 1 2

U " U' + 2E l[J-Sljglj +S2g2]" * U.
m N 3

i = (lgljSlj + g2S 2)P1 I L1 13

E 1U(tf) iKKif, eli(tf) -0, qU(t f) -0

Ea Eii(tj+l )  m Eli (tj+,), e Li(tj+l) m e ii(t j+l)'

~~~q (tj ) = ql (tj)

and the A, NJ1 , j -1,2,3 are known in terms of the previous solution of

(2.25). Equations of the same form are also satisfied by the coefficients E2 P

e 2, and q2. The assumed dependence of the costates on the state, equation

(2.25), results in a set of equations which, unlike the conventional optimal

control problem, are themselves a two point boundary value problem. This

is a result of the leader appending the two point boundary value problem

I. which results from the followers' optimizations. So, we assume an explicit

[ dependence of the solution of the K31 and the g3L on the solution of the

Kl' gli, K2 and g2 in order to reduce these equations to a solvable single

point boundary value problem. Thus we assume

m

K 3i 'F 31,2 K2 +  3i F3U, lj + F3i,4

m
g3 U OF3 L,292 + j IF 3ijgj

Notice that the same coefficient matrices appear in both equations. This,

[it turns out, is sufficient to obtain the desired dependence. The differential

equations that these coefficient matrices must satisfy are[

I
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m

i3,2' F31, 2 +~ F 1A' +S li+ "U, 4S2 - U ~ ~j 3, Fi t 0
' m

F3 i, lk AF3i, lk+F 3ilk +F 31,4Slk - F31,2 jElQljF 3i,lk i k

m

F31, lk -AF31, lk + F3i, 0' + F3i,4Slk -F31,2 j l j F3 i-k

F31 , lk(tj) -

31,4 3AF31,4 +F34 3 , 2Q2  F3 ,2 - (QjF3j 4 +F 3i ljQlj)F 3i 4 (t) 0

These equations are solved once only, and for a period of one sample

interval. The solution is then used repeatedly during each sample interval,

plugging into equations (2.25), converting (2.25) to a single point boundary

value problem in which only the boundary condition changes between sample

intervals.

Having done this, we are now at a point where the solution is

expressed entirely in terms of equations of the following general form of

the coupled matrix Riccati equations

2 A K I ITA 222 A I.I
O. " K+ A + T jK +K Z D K.+QjK 2 " +k= ikj,kj

(R)

KZ(T i+); known ji,...,2 I.

where 2 is the number of coupled equations. These must be solved repeatedly

with changes occuring only in the boundary conditions.

The final step for this technique of solving the sampled data

problem is to derive an efficient technique for the repeated solution of

coupled equations of the form (R). What follows is a generalization of [10]

and (15].

JL!
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The approach taken is to express the solutions K., corresponding

to the actual boundary conditions, in terms of a solution K. which
-71

corresponds to some other arbitrary, known boundary conditions. Equations

for the correction terms are found and a sequence of steps leads to a

solution which requires A uncoupled matrix Riccati equations to be solved

each time and some auxilary equations must be solved once only and over a

period equal to the sample interval. The details follow.

Define

z (K

then

K ., ; + (Z.)

j Differentiating, we find

"-ZjAj .+ AkZ +AZj G j, Z .

+ k jkHjk(Zk) k
+ z I

Z.(tk+l) -K(t+) k+l)]

~where

H A -
j - ,j k1,k~ k

If we define the term ,k Jk
A- a& AL D1 1 T9Gi - (z)s j 1, ,-

(Z j

K 2  -1£ j ,...

L . .. L _ .2 : ; J ,. . ....:. .... .... .. . . ... .. ... . ... .. . . . . . .. .
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differentiation yields I

A-, L-11 2-
j ,j j Kj 2,j k lTj,k K j k-i j,kK j

Kj (tk+l) =[Z (tk+l)] _Z(tk )k lk£ Ik+l ,..-.

where

Al,j ij

A-i Az +G 12,j 1 j

T -1 -G2
Jk j,k

D -1 =+G A

j,k J,k

So, the solution of the Z . equations can be obtained once the K. ' equations ,.1 J

are solved. Rowever, the solutions for the original equations, K. are

expressed in terms the (Z j-,...,i and, given (Z )P the remaining

(Z) for j-l,...,.-l are known in terms of (Z)-I and the K.

j'l,.o.,A-l. For each i, i"1,...,2, the term (Zi) satisfies

S- i i -1 i 1 i i i-I i
(Zi) (A 1 k k)lGik N )(Zi) '(Z - i ) [kkt i,kK (]

(Z i (t ) [K i(tj+) "Ki(tj~1 )]Thus, wel haeteKi Kjl i i

Thus, we have the K, , known in terms of (Z L and the K -

j-l,. ..,-l. The equations in K are of the same form as the equations

in KA and so the technique is applied again and is done recursively until

we reach K1 . Notice that at level i of the recursion only one equation, in

A'
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(Z1) , need be integrated.

In sunmnary, once the preliminary solutions, Ki, are found, the

desired solutions K are obtained as follows;

solve for (Z1)
"-

S-l + 1Z -1
K1

solve for (Z2)
"

z2)-1 12-1
22

2 42 2 -1

K2 -K 2 (Z2 )

1  1 + 1

solve for (Z3)
"1

31 2 3-
3-1 2 3 -1

( 2 ) K2 (Z3)-K (3)- =K3+(Z3)-
- 3 3 3K3 =K 3 + (Z3 ) "

3 %3 3 -1
Ki 2 =nK2 + (Z 2)

3.,%3 3 -1
K 1 K + (Z 1 )

solve for (Z2
"

(z )'2 + -*t -
(Z K(Z=j- Kj (Z) Jl,.,-

So, in this first approach, the sampled data Stackelberg problem

is reduced to the solution of a set of 4 coupled matrix Riccati equations,

each of dimension n, which must be solved at each sample time with only a

change in the boundary conditions. The solution of these equations for

Ii
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any boundary condition is then found to be expressible in terms of the[

solution of an auxiliary problem. The needed correction terms require the

solution of I uncoupled matrix Riccati equations of dimension n, at each

sample time. Considerable savings in computation will accrue if there are

a large number of samples, which is typically the case.

2.4.1. The Second Approach: Invariant Imbeddingj

The ultimate goal when deriving the solution technique is to

minimize the amount of computations required by taking advantage of the

fact that the equations to be solved are the same in each sample interval

and only the boundary conditions change.

The derivations performed in the remainder of this section will

proceed as outlined below. First we define more compact notation, grouping

the state and costates according to their boundary conditions. We then

assume an explicit functional dependence of the costates on the state and

on the costates' boundary conditions. Due to this assumption, the solutions

of the resultant equations are independent of the changing costates'

boundary conditions and it is because of this independence that we are able

to obtain the computational savings. The cost to go equations are derived I
since they are needed to generate the appropriate boundary conditions to

plug into the solution functions. A functional dependence of the costs to

go on their boundary conditions is also assumed and finally the boundary

conditions for each interval are established in terms of those in the

adjacent interval. The details of the derivation follow.

Rather than making the standard assumption of a functional 1
dependence of the costates on the state alone as in the first approach, we

IM&i
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will make a different assumption. Notice that on the interval [tjit J4)

the costates Pli' Vi, equations (2.18) and X, equation (2.20), have

j boundary conditions at t +. The costates Yi, Vi, equations (2.21) and the

state x, equation (2.23), have boundary conditions at tj• For convenience

of notation, let us group the state and costate vectors according to

boundary conditions as follows

Yl - x

Yi x

Y2 1 mI " ."' Y)
y3 -( " ; i 2 .. "' p')'"

Now equations (2.18), (2.20), (2.21) and (2.23) can be expressed as

di Y2 L A 22 A ]23 Y2 (2.27)

where the Aij of (2.27) are appropriate concatenation of the Q, A and S

matrices of (2.18), (2.20), (2.21) and (2.23). In each interval [tj,tJ+1) ,

the vectors Yj and Y2 have boundary conditions at t and the vector Y3 has

boundary conditions at t +I.

Y2 (t ) -0 (2.28)

--v 2

--- ay, i-l 2 i
, -- - -- - -PL

Y3(t  (2.29)

* V1
pmm

21l t.+
I
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where Y2 (t + Yz(tj) defined on the interval [tjitj+t) and Y3(tj+i)=

"im Y3 (t). for Y3(t) defined on the interval [tjtj+i).t-.tj+l
It is in the next step where we deviate from the standard

approach. We will make assumptions of the functional dependence of the

costates on the state and on the costates' boundary conditions. In so doing

we will be able to solve for these functions independent of the costates'

boundary conditions.

For t E[tjItj+ 1) assume1

Y2 (t) -F1 (t)y1 (t) +F 2 (t)y2 (tj) +F 3 (t)y3 (tj+ 1 ) (2.30)

Y3 (t) -G1 (t)y1 (t) +G 2 (t)y2 (t) +G 3 (t)y3 (tj+l). (2.31)

By differentiation of (2.30) and (2.31) and by substitution of (2.27), we

find
2

GI -A 31 +A 33G I -GjAl " GIA1 3G -G2A23G1 . GI(tJ+1) -0 (2.32)

G2 "A32 +A 33G2 -G1A1 3G2 -G2A2 2 -G2A23G2, G2 (ti+ t) -0 (2.33)

G3 - (A3 3 -GIA1 3 -G2A2 3)G3, G3(tJ+l) 1 (2.34)

Fl a (A2 2 +A 2 3G2)Fl - Fl(All +A1 3G1 ) -F1A1 3G2F +A2 3Gl, Fl(tj) -0 (2.35)

2 "A22F2 +A 2 3G2F2  FIA13 G2F2, F2 (tj ) -1 (2.36)

F3  (A2 2 +A 2 3G2 - F1A1 3G2)F3 +A 2 303 -F1A1 3G3V F3 (tJ) "O. (2.37)

The dependence of Y3(t) on Y2 (t) instead of Y2 (tj) results in simplified
computations.

2All matrices are evaluated at time t unless indicated otherwise.

Ll
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Since Y2 (tj) -0 and by substituting (2.30) into (2.31) we have

y2(t) -F1(t)yl(t) +F 3(t)y3(tj+ 1) (2.38)

Y3(t) -Gl(t)yl(t) +G 3(t)y3(tj+l) (2.39)

where G; = G1 +G2F 1 and G 3 3 + G2F3"

For t t tiptj 1 ) assume

yl(t) -HI(t)Yl(t )+ H3(t)Y3(tj+ I) (2.40)

by differentiation of (2.40) and substitution of (2.27) and (2.39) we find

H 1- (A1 1 +A1 3G 1 )H1 , Hl(t ) =I (2.41)

H3  (All +A1 3G)H 3 +A1 3G3 ' H3 (t.) -0. (2.42)

* If the system (2.15) and the criteria functions (2.17) are time invariant and

if the sampling rate is constant, that is if (t J+I - tj) T-constant for all

T j, the equations (2.32) through (2.37), (2.41) and (2.42) will be the same

for each interval. Then, since their boundary conditions are invariant,

Fthese equations will have to be solved only once and the same solution will

be valid for every interval [titj+1 ), J

2.4.2. Boundary Conditions and Cost To Go Equations

The boundary conditions for the costate equations on the jth

interval [tjtj+i) are known in terms of the costs to go at the end of the

I. interval, (2.7) and (2.10). Therefore, for the purpose of obtaining the

1costates' boundary conditions, we must first derive the cost to go equations.
First, substituting (2.19) and (2.22) for the controls and with the form of

II Because (2.30) and (2.31) reduce to (2.38) and (2.39), the dependence of
yl(t) on y2 (tj) need not be assumed.

I
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the solution for y3 as in (2.39), recalling that y3

=(X';" Pjl ... " P)" I
the integrands Li of the criterion functions can be written

Li =.(xQ ix+ 0 u' jR 1 u] y +IQ Y Y3

and for t E[tjlcj+l),
1 -' Y-t( (2.43)

Li YISilY1 +Y3(t 1 ) 'JS+12Y3(tJ+ 1)) +YlS 1 3Y3 (tj+l) [

where all variables are evaluated at time t unless indicated otherwise, and

where

ilQ Gjl

S iG'SiGi2 3

S3 G1 SiG3

and

S io 0

L 0  Sir

Due to the assumed explicit dependence of the costates, Y3 (t) on

their boundary conditions in each interval, we must make a similar assumption

for the form of the cost to go equations so that they will also be independent

of the changing boundary conditions. That is, for the interval t E([tjitj+ l )

we define the function

v+i(yl(t)t ) ! 1iYl(t)Cil( t) +  ((tj2+.)'Ci24(t)y3(4)+)

+ yl(t) 'C 3tY3 (t J+I). (2.44)
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When evaluated at tj, with the controls in the interval [tjstf) being the

optimal controls defined according to (2.4), this function is then the

J. optimum cost to go, denoted V(Yl(t ),tj). By (2.44) we see that on the

interval [tjjtj+l), the cost to go is not only quadratic in yl, but also

has a quadratic term in y3 (tj+l) and a cross term in yl(t) and Y3(tj+l).

From the relationship between the costs to go (2.44) and the

integrands of the criteria functions (2.43), the differential equations of

I the coefficient matrices in (2.44) are found to be

Ci* - -S il 1 11 il (2.45)

C12 " "Si2 - 2A{3Ci3  (2.46)

Ci3 -Si3 - CilA 1 3 - AlCi3 (2.47)

where A11 - (A11 +A1 3G1 ) and A13 A13G3 "

2.4.3. Boundary Conditions

The boundary conditions for the last interval, that is, at the

terminal time, tf, are

fi Cil(tf) " Kif

C12 (tf) - 0 (2.48)

C13(tf) - 0.

I. We must also establish appropriate boundary conditions for the remaining

intervals. The costs to go must be continuous and therefore

Vi(Yl(tj),tJ) . Vi(Yl(t+)'t + (2.49)

Since the cost to go equations are integrated backwards, we are trying to

!
I
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establish the C'k(t; in terms of the C k(t)+ at each J, for each i, and

for all k,"k-1,2,3.

Let us choose

C i(t ) -o (2.50)j

Ci3 (tj) "0 (2.51) 1
for all j and for all i. So now we must simply find Cii(tj) in terms of the

Ci +) for k -l,2, and 3. 1Cik(tj)

Due to their interrelatedness, we must simultaneously consider

solving for the boundary conditions Y3 (t 3 ) from (2.18), (2.20) and (2.44)

and solving for the Cj1 (t;) in terms of the Cik(t.), k- 1,2,3, from (2.49).

To minimize the required computations, it is advantageous if

Y3(t) is broken up

y3 -
(2.52) 1.Y3 ... P "

L:3_j
The derivation of the boundary conditions for the jth intervalj

[jtj+l) proceeds as follows. From (2.29), (2.44), (2.50) and (2.51)

I ill
Y3 (t +1) Y 1 (tJ+t) (2.53)

C-I
ml~

and

O" '

. . ... .... .... Ill e l. . . . . . . . . l . . . . . 11 I . .
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I. I'P~ - (C 1 y -(F 1y1 +F3y3)] IY3 (t j+l) [oIllC( y

t J+l (2.54)

, [C0l CL 33 3 F Y

tJ+1

where =rC' 2 """ C' I and where F is broken up into F [F
wh.r (C . 3F 3 =[ 3  3

F3 and F3 having dimensions which correspond to y3 and y3 . By substi-

tuting (2.53) into (2.54), equation (2.54) becomes

Y3(tj+l)- [C0 1 y1 - C(F y1 +F3Y 3 +F 3 C'yl)]
tj+l

so (2.55)

Y3(tj+1 ) u((I+CF (C -(F +F 2))y 1 ] -

tj+l

Combining (2.53) and (2.55) defines D

Y3 (tj+,) Dj+lYl (tj+) (2.56)

where

-------------- --------------------------------- 257D j+2 = (2.57)

J+1

By breaking up Y3 as in (2.52) we need only invert a matrix of dimension n,

the system dimension, to obtain Dj+1 . Otherwise we would have had to invert

a matrix of dimension n(m+l).

To find the Cit(tj+l) we also need a relationship between (t

and Yl(t1 ). That is, from (2.40) and (2.56) we can find

Y3 (t]+1 ) - Ejyl(t ) (2.58)

I
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where

Ej M D +(I - R3(t-+ ) Illt~) (2.59)

So, from (2.44), (2.49), (2.50), (2.51) and (2.58)

Cj1(t) WCit + E C +t)Ej + 2C +()EA (2.60) I
We now have all of the required boundary conditions. The cost to go boundary

conditions are (2.48), (2.50), (2.51) and (2.60) and the costate boundary

conditions are (2.56) or (2.58).

2.4.4. Solution of the Cost to Go Equations

In each interval, we do not need the cost to go for all t E t tJ+l)

but rather we only need the value at the initial boundary, i.e., we only

need to solve for the Cik(tj) in terms of the Cil(tJ+i).

The cost to go equations, (2.45) through (2.47), are the same for

each interval and only the boundary conditions change. In order to avoid j
resolving these equations in each interval, we will assume a functional

dependence of the cost to go matrices on their boundary conditions, similar 11
to the technique used on the costates. Since the cost to go equations are

linear, we can find such a functional dependence. It will be independent

of the changing boundary conditions and can therefore be presolved. The U
solution of the function will be valid for each interval.

For notational convenience, we will "stack" the columns of the cost

to go matrices so that the matrix equations (2.45) through (2.47) can be

written as vector equations. Let Cik be the vector corresponding to the

matrix Cik. Define ci as
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I[]
c i C 12 (2.61)

Then (2.45) through (2.47) can be rewritten as

" C +b. (2.62)

where the matrix A and the vector b. are known from the coefficient
i L

matrices of (2.45) through (2.47). We can now solve for the functional

dependence of the solution of (2.62) in the jth interval on the boundary

condition ci(tj+i). Actually, since ci 2 (t + 1 )-0 and ci3 (tj l)-0, we

need only assume dependence of the solution on cil(tj+l) , i.e., for

t E[tjitj+I) assume

ci(t) = Mi(t)cil(tJ+l) +di(t). (2.63)

From (2.62) and (2.63) it follows that

AM Z iMi M i (t j+ 1)  (2.64)

I di Ai di+ bi di(tj+1 )=0 (2.65)

where the dimension of the identity matrix in M(tj+i) is the same as the

dimension of Z11.

If the system is time invariant and if the sampling rate is

constant then (2.64) and (2.65) need be solved only once over one sampling

interval. In fact, only the value of Mi(t+) and di(t + need be stored since

we only need ci(tj) in terms of cil(tj+l). That is

I
I
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ci(tt) Mi(tj)ci 1 (tj+) + d(t) (2.66)

where H i(t.) and di(t are the same for all j.
£ :i
Due to the relationship (2.63), we will not have to solve the

cost to go equations (2.45) through (2.47) repeatedly for each sample

interval but need only plug into (2.66).

2.4.5. Sumary of Algorithm

We will now summarize the required calculations in the following

flow chart. The major steps and reference to the related equations are

given in the order in which they must be computed. [
All integrations are performed over only one sample interval if

the system is time invariant.

integrate (2.32) through (2.37)to find the G and F matrices

Sintegrate (2.41) and (2.42) !  integrate (2.64) and (2.65)

to find the H matrices to find the matrices Mi(t.j)

and the vectors di(t.)

Recall that M (t+) and di(t )
are invariant with respect to

j for a time invariant system

Going backwards from j -r-l to j -I, beginning with the known

c1 1 (tf) from (2.48), the following calculations must be done for each j in

order to obtain the boundary conditions for each interval.

LIJL



1 31

i Given Cil td

~J =r- l

Calculate D J+1 from (2.57) and

. Ck(tt) k-1,2,3 from (2.66)

II

From (2.59), 
find Ej from Dj+1

Increment j

by -I

. Using Cik(t +) and E j, plug into

S(2.60) to /obtain C il(t)

The sequence Is repeated

-__ until we have Ci(tel

' .2.4.6. implementation

The controls can now be implemented forward in time. They are

found by (2.19), (2.22), the definitions of Y3 3 iP e.,.

I. and y1 -x, and the evolution of y3 (t) in each interval, t r[titj+,) given

by

I, Y3(t) = P(t)yl(tj) (2.67)

~where

I 
P(t) = [ZG(t)(H(t)+H

3 (t)E )+G 3 (t)Ej] (2.68)

which is derived from (2.39), (2.40) and (2.58).I
1
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If P(t) is broken up as

P°(t)

P I~t)
PP(t)

P (t)
mm

where each block Pi(t) is n by n, then the ith control during the jch

interval is

u.(t) - -R 1 B'Pi(t)x(t.)"
1 ii ii

As outlined above, there are a number of equations to be

integrated, some of which are of large dimension. These integrations, how-

ever, are done once only and are performed over a period equal to the

length of only one sample interval. Thus, as the number of samples taken

increases, the computational burden is reduced. Computationally the only

limiting factor which prohibits us from allowing the length of the sample

intervals to become arbitrarily small is the corresponding increase in the

number of matrix inversions which must be performed at the sampling times

in order to generate the required boundary conditions for each interval.

That is, as the period of integration becomes smaller, these matrix inver-

sions will tend to become the dominant computational burden. The matrix

inversions present another difficulty since, in general, we are unable to

guarantee their existence.

2.4.7. Comparison of Techniques

The first technique discussed at the beginning of this section is

a method for converting the problem of repeatedly solving m coupled matrix

-- .-.. -,
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- Riccati equations to that of solving mn uncoupled matrix Riccati equations

providing significant computational savings. These equations, however,

must still be solved repeatedly for each sample interval with only a change

in the boundary conditions.

The second approach requires a set of' linear and Riccati equations

to be solved once only over a horizon which is the length of only one sample

interval. The computational advantage of this second technique is due to

the fact that the integrations are performed over only one sample interval

which is, in general, considerable shorter than the time horizon of the

* original problem.

The second approach has an advantage over the first approach due

to the fact that the equations which are to be solved in the second

technique are solved only once for a period equal to one sample interval

while the equations to be solved in the first technique must be solved

repeatedly during each sample interval. However, for a sufficiently small

sample interval it has been observed that the matrix inversions needed to

generate the boundary conditions in the second technique can become a

I dominant factor. Therefore, the advantage shifts to the first technique for

the case of decreasing sample interval.

j 2.5. Conclusions

in this chapter, a sampled data equilibrium Stackelberg strategy

has been considered. The advantages of the formulation can be seen by

considering certain characteristics of the continuous time Stackelberg

I problem. The linear quadratic, continuous time, closed loop Stackelberg
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problem results in a solution, if it exists, in which the controls are non-

linear functions of the state. Furthermore, the Stackelberg solution for

general dynamic games does not, in general, satisfy the principle of

optimality. The principle of optimality can be imposed for discrete time

games but the procedure for doing this for general continuous time games

has not been established.

The sampled data equilibrium Stackelberg solution results in

linear control laws for the linear quadratic case. The advantage of linear

control laws is that they are quite simple to implement.

In deriving the sampled data equilibrium Stackelberg solution we

have been able to obtain considerable computational savings. That is,

rather than performing integrations over the entire time horizon of the

original problem, we are able to imbed the subproblems of each sample

interval into a more general formulation, the solution of which requires

integrations over a period equal to the length of only one sample interval.

The computational technique, an application of invariant imbedding developed

for the particular case of a Stackelberg strategy and the type of boundary

conditions peculiar to it, is quite useful for many problems, in particular

for a variety of sampled data formulations.

77W
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TCHAPTER 3

ON THE EXISTENCE OF STABILIZING SOLUTIONS

FOR THE STACKELBERG STRATEGY

3.1. Introduction

In the previous chapter we developed an effective method for the

coordination of the decentralized control of a large system by imposing a

form of the Stackelberg strategy and exploiting certain characteristics of

the strategy. The Stackelberg strategy, as considered in Chapter 2, is one of

many forms in which it might arise. Generally it is of interest either as a

control strategy to be imposed on a given problem, such as for coordination

purposes, or it may arise naturally wherever a precedence relationship exists

among the controllers.

While prescriptive approaches to the design of controllers which

Isatisfy the Stackelberg strategy have been developed for many forms of the
strategy, little is known about the existence of such control laws or if the

system under their control will be stabilized. In this chapter, we will

address the problem of the existence of stabilizing solutions for controller,

which are obtained according to a Stackelberg strategy.

In order to consider a simple form of the Stackelberg strategy we

will examine the problem of a linear system being controlled by two controllers

where the control laws are constrained to be in the form of linear, time-

invariant state feedback. The cost functions are assumed to be defined over

an infinite horizon. It is known [6] that in general there is no optimal

Ilinear control law for the leader so we consider the problem in which the
leader's cost function is modified in order to average out the dependence of

jthe solution on the initial condition. This formulation is well posed with

U,- [ ... . . . . . . . .. . .. . . i - ,. . . . . . i l - . ... ,. . . . .. . . . . . . ...I ,
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respect to linear solutions. The necessary conditions for this problem have j
been derived in [6].

Our interest in the problem is in finding out if there exists a I
stabilizing solution and if so, presenting conditions under which a stabi-

lizing solution can be guaranteed. This particular form of the Stackelberg

strategy, i.e., linear state feedback, is considered because it allows us toj

use concepts from linear systems theory in approaching the problem.

In Section 3.2 we will introduce the concepts needed to establishL

the main result which is presented in Section 3.3. [

3.2. Background

It will be assumed throughout that we are dealing with a linear

time invariant system and linear time invariant control laws.

3.2.1. Controllable subspacesL

For the multi-controller case, the individual controllable sub- [7
spaces are not invariant with respect to feedback. For example, for the two

controller case

(A+B IF1 10 2) * (A10 2

in general, where 2  610B2 ) and where + N-

( AIB) 0+ AB + --+A lB

where N is the dimension of the system and $-61(B). So the controllable sub-

space of one controller can be altered by feedback by another controller.p

The jointly controllable subspace

(A$ 1) + (A[8 2)
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say, is invariant with respect to feedback. This is true for any number of
a-

controllers.

For the two DM case we can denote

Ri(Fj) (A+BjFj16 i#j, i1l,2

and the following is readily verified.

Lemma 3.1: For 11,2 the subspace Ri depends on Fj, j#i, and does not depend

on F..I

Thus the notation Ri(Fi), j#i is justified.

If we define Ri to denote the space perpendicular to Ri then, for

given F1 and F2;

Ri (F ) is the smallest (A+B Fj)-invariant subspace containing

i i j, 11,2.

Rj(Fi) is the largest (A+B BiFi)'-invariant subspace contained in

I 7(B ), i#j, i=1,2, where 7(A)-null space of A.

The following subspace definitions will be useful. The system triple

(A,BI,B2) uniquely determines the subspaces defined as follows;

Ri : largest subspace s such that ,CR (F ) for all Fi, joi.

The R* can be thought of as the greatest lower bound (in the sense of sub-
i

space inclusion) for the set of subspaces Ri(Fi) over all Fj. The definition

of these subspaces is invariant with respect to feedback, i.e., they are the

same whether we consider the system (A,BI,B2 ) or ((A+BIF +B2F2),B1,B2) for

any FI,F2.

I 3.2.2. Criterion Subspaces

For the quadratic criterion function

Ji -t I = (x'Qix+ 1 'Ru
o u'j iu)dtI
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and the system [
m

=Ax + E Bu x(to)x
J-l uj 0 0L

ui"FiX.

the criterion subspace is defined L
m -&(F;J-1,.. ,m) " < C' +J- E 'li>i

where

(A+ BiFi)

ci - "'i' i

, , ( '1:2
lj J ij )

C'C - Q 0, R > 0, Ri>O ,J-l,...,m."

If x 0  iE , Xo#0, then Ji>0 (possibly infinite). We say that the subspace

is observable through the criterion function J i"

The criterion subspaces have the following property.

Lemma 3.2: 7-

m m
+=2 C + (F ; J-l ... ,m)i.l- j

for all F is the open loop~i with F -0, J-l,...,m.

The proof of this follows in a straightforward way from Theorem 3.6

of [22].

Lemma 3.2 tells us that observability is preserved under feedback.

Another direct consequence of Theorem 3.6 of [22] is the following:

Lemma 3.3: If for some i, the Rij, J-1,...,m are all positive-definite,

R ij>0, and the system is detectable through Ji ' i.e., the open loop Ji"

when all feedback gains equal zero, then the system will remain detectable

through Ji(F1 ; J-l,...,m) for all F .

L --- ' " .. . .. a.. . . ' . . J . . . .. * .. .. .. ... .. .. .. .. .. " 'I . . . . . .A
I'

Il -
l

: " % - . .
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If we define ;, to be the subspace perpendicular to i then, for

given F1 and F2, in the two controller case, for RJ-0, joi,

(0,F) is the smallest (A+B2F 2)'-invariant subspace containing

R(Ci)

and

; 2(FIO) is the largest (A+BIFl)-invariant subspace contained in

71(C 2 ).

The subspaces 2 (F1 ,0) and 1(0,F2 can be defined similarly.

At this point, we need to be familiar with the following concepts

of (A,B)-invariant subspaces (221.

A subspace d is (A,B)-invariant if and only if there exists an F

such that

(A+ BF) C , .

If S is a set of subspaces then the supremal subspace z'* of the set S is

defined as the subspace W such that W e S and for every ieSr S, . If the

[supremal subspace exists, it is unique.
For some subspace Q, the set of all (A,B)-invariant subspaces

contained in Q always has a supremal element. With this background we can

make the following observation.

Lemma 3.4: There exists unique and such that

i(F1,F2 ) C ;* for all F1,F 2 P
~i.e.,

;2(F C 2) C ,'2 2

(F, 2 ) C 1 (0F 2 ) C 1

where is the supremal (A,Bi)-invariant subspace contained in ??(C]), joi,

i-1,2.I

I .~~~~~~~~~'I .. ... .I l -I I
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Corresponding to these supremal are infimal subspaces for

which

i C;(FIF 2 ) for all F1 and F2 .  U
A particular case that will be of interest is as follows:

If, say, R12 > 0 (positive-definite) then

;,lF,,F2 C ; I<O,F2 1 ;i(0,0) -- ;* .
~FF 2) Cp F 2) C V

3.3. Existence of Stabilizing Stackelberg Solution

We consider the following problem. For the system

- Ax + B1U1 + B2u2  x(to )= x

and linear control laws

Ui M Fix i- 1,2

decision maker i wants to choose Fito minimize the criterion function

2
2 " f (x'Qi x+ E u!R u )dtt jmlji

where o

CiCiQi' Ru > 0 i 1,2, R1i)0 J i

and where they act according to the Stackelberg strategy with DM1 as the

leader [6).

It is known in general there is no optimal linear control law for

the leader so we consider the problem in which the leader's cost function

is modified in order to average out the dependence of the solution on the

initial conditions xo, i.e., we define

Jl a E{Jl
X0
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with
E{x " 0 and E{x x'} X >0.

0 0 0 0

The necessary conditions for this problem were derived in [6]. The

conditions for the infinite horizon problem are as follows

-1

A'K2 + K2A + K2S2K + F1R2F + Q - 0
2 2 2 22 2 1 211 2

A'MI + M1A + K2S12K2 + FiR 1F1 + Q1 = 0

N2A' + iN 2 S22 MN1- N 1MS 22 + S1 2M2N1 + N1 M 1S1 2 - 0
NA +N +X o ' 0
N1 X+ N1 o

R FIN + RIFIN - BI (MN + MIN I) - 0
21 12 111 11 2 1

where the last equation is solved for F
l-

We would like to answer the question: Under what conditions can
we guanratee that there will exist a solution (F*,F*) such that the resultant

1' 2

system

S(A+BF 1  B2F2)x

I" is asymptotically stable?

For a given F1 , the follower is faced with a conventional optimi-

zation for which it is known [23] that if the triple (C2, A+B1F1,B2) is

stabilizable and detectable, then there will exist a unique optimal F2 and"2
that the system matrix (A+BIF +B2F*) will be stable. So, we ask under what

conditions does there exist an optimal F1 and if it exists, under what

conditions will it be chosen such that (CA+BF*,B) will be stabilizable

and detectable?

'V

L



42

Theorem 3.1: Existence of stabilizing solution.

We assume that the system is jointly controllable

R1 (0) + R2 (0) - RN

and we assume that R> 0 the leader has a positive definite penalty on the

follower's control action. If

i) The system is observable through l

and

ii) j

then there exists an optimal F* and an optimal F* and the resultant closed

loop system

(A+ B*F* +B*F*)
1 1 2F2

will be asymptotically stable.

Before proving Theorem 3.1, some preliminary results are needed.

After DM1 applies feedback, the controllable subspaces are R (O)

and R2 (F1). We have assumed joint controllability so

R1 (0) + R2(F1) = R .

Note that (A+B1F1)R2(Fl)C R2(F1 ), i.e., R2(F.) is (A+B1F1)-invariant.

Define the factor space

1- RN/R2(1)

This space is isomorphic to RI(F1 ) where RI1(F1) is defined as follows:

If Ro0(FF2) =R(F 2) rR 2 (Fl) then let i (F i) be any subspace such that

Ri(F )f R (FFF 2 i i ( F i  i.

Since X is isomorphic to R1 (FI), i.e.,

RN/R2(F1 (F1)



I let
le a (1+ R2)/R2, Bi = 1(Bl)

and let All be the map induced by A on X. Then,

Lemma 3.5:

<Alli 
I

Proof: Proposition 1.2 of (22].

Now, corresponding to RI(F I) and R2 (FI) there is a basis such

that the matrix (A+BIFI) will be of the form

[A A~

22 
11

, A21 A 22

wh e r 
A 2 2  0' (A + B I1F 1  ) R R 2

I A1 1 P -P(A+B 1 FI)

where P is the canonical projection,

p : RNx.

So from Lemma 3.5 we see that the eigenvalues of A can be placed

I arbitrarily by DM.

In the sequel, when referring to the system, we mean (C2,A+B1FI,B 2)

unless noted otherwise.

We will use the notation x (A) and X(A) defined as follows:

x (A) is the space spanned by the eigenvectors corresponding to the unstable

eigenvalues.

X (A) is the space spanned by the eigenvectors corresponding to the stable

eigenvectors.

I
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The following lemmas will also be needed.

Consider the set

1l : {F 111 1(Fl'f 2(F 1))-< k1

where f2(f1 ) represents the reaction of decision maker two to the controls

of decision maker one. That is, f2(F1 ) is the implicit mapping defined by

the optimization performed by decision maker two.

Lemma 3.6: The mapping F2 - f2(F1) is continuous over the set of F1 for which

the triple

(C 2 9 (A+B 1F I) ,B 2)

is stabilizable and detectable.

Proof: The mapping F2 .f2(F1) is defined implicitly by the solution for K2

of the Riccati equation
S-l

0= (A+BIFI)'K2 + K2(A+BIFI)-K 2B2R2 2 B 2K + Q + FIR2 1F1

and

2 = -R22 BK

The partial derivative of the Riccati equation with respect to its solution

K2 is

where ® is the Kronecker product (i.e., AVB- (aijB)) and where

A- (A+B1F1+B2F2).

If F1 is such that the system is stabilizable and detectable then

will be stable. A characteristic of Kronecker products is that if A is

stable then so is
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and since it has no eigenvalues X-0, it is nonsingular.

By the Implicit Function Theorem, if a function f(x,y) is dif-

ferentiable with respect to x and y and if

0 - f( ,y)

where f : X x X

then there exists a neighborhood N of 7 in 4 over which a continuous,

differentiable (implicit) function g(y) is defined such that

*0 - f(g(y),y), yeN

if

is nonsingular.x

Therefore the function F 2 f2(Fl) is continuous (and differentiable) over the

set of F for which the system is stabilizable and detectable.

The set 3 is a subset of

2 - {F1Ij1(FI,F2) 4 k; for any F2 }

and

Lemma 3.7: The set J2 is a subset of 33 for a given k, a sufficiently

* I large f and a sufficiently small e> 0 where

11{FIOFI1 f; Re{X(A)} < -e, e>0, for any F2}.

- Note that ;3 is closed and bounded.

Proof: For our case where we have RI>0 and R12 > 0, Lemma 3.7 follows from

fLemma 3.8 which we will prove in detail. (Lemma 3.8 is in a more convenient

form to work with.)

A i
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Lemma 3.8: For

iAx + Bu

J - 12 E {f (x'Qx+u'Ru)dt}
XO t 0

R>O, E{x} 0, E{xoX'};

C'C - Q>0

(C,A); observable

(A,B); stabilizable

5A= {FIJ(F)4k}

Jg = (FIIIFII < f; ae(X(A+BF)) < -cI.

For a given k, there exists a sufficiently large f< and a sufficiently L
small >0 such that

JA C JB"

A similar result for the case of Q>0 has been obtained in [25]

for output feedback.

Proof of Lemma 3.8: For any F for which J(F) is finite the system will be

stabilized and the cost will be

J(F) - tr(L)

where L satisfies

LA + AL + Q + F'RF - 0 (3.1)

where A- (A+BF). A - (A+BF).

By taking the norm of equation (3.1), we establish that FEaA implies that

IIFII < f

-7-77 - -

I "IA'" 
:
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where

f b + c (3.2)
2 2 +a

where

a - min{IIF'RFII} > 0
F

UIFII - 1

b = 2f'IIBI

c 2f.11All + IIQiI

It remains to show that FE A implies the existence of an e>0 such that

tqe(A(A+BF)) <
i Define

Df= Q + F'RF

i and-(F m-1 .
Q(F) - E (A+BF) Q(A+BF)

i=O

j. Notice that

so 6Z(A ' ) q CA(F))

and Q(F) > 0.

" If we pre- and post-multiply equation (3.1) by A and A respectively, and

sum these equations over i-0,1,...,m-l, we have

LA + A'L + -0

7- where A- mli'L-i

ifto

Since Q>0, the set IIFII 'f is closed and bounded and since the

eigenvalues of a matrix depend continuously on the elements of the matrix,

there exists a qmin



48

0 qi min(X1 ()0 < min IIFII < F

Notice also that

Lt 1 < ElX (L) - tr(L)

for any L L'>
L -L' O

where
IILII- sup ILxI X max (L).

Ixl -1
Thus

IILII<J(F) - k

for (
FEA

and
rn-1 21~ A.

IIl L •1 k. E (IIAII +IIBII .f) Z 9.i=0

'kif 1

then A

Asufficient condition for L<-- is that

Xn(Q)
11 L If <, ,-

2c

therefore for FE .'A we have

e{ A(A+BkW1 } •-

for c such that
~|

0 < C < q min(3)2-t (3.3)J

So, for f as in (3.2) and e from (3.3) we have

A C B

k, .
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The proof of Theorem 3.1 will be done in three parts.

First, we show that, under the conditions of the theorem, there

exists a leader's control that will make the system stabilizable for the

follower and that in order for J to be finite the leader must choose F such1 1

that the follower will stabilize the system.

Second, we show that there exists a leader's control such that the

system is detectable by the follower and that for such an F1 , the follower will

stabilize the system.

The first two parts will establish that there exists an F1 such that

1 and J2 are finite and we establish that the control gains considered by D

can be restricted to a set for which the follower will then be faced with a

stabilizable and detectable problem. In the third part we show that the

leader's optimization can be considered to be over a closed, bounded set on

--. which the follower's control depends continuonsly on the leader's control and

so the leader's cost function will be continuous in F1 over this set. These

conditions are sufficient to establish the desired results.

Part 1r I By Lemma 3.5 we know that there exists an F1 such that the system

is stabilizable by the follower. Now we show that the leader must make the

system stabilizable to have a finite J1.

We can express as

14iE{lim(x'V(t)x
t- . 0 0

where

V(t) *f e (C1C1 + FF+ F 2 Ae'ds
0 1

1
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with A-(A+B1F1+B2F2) and, without loss of generality, assume Ri" I and

R22 0I. If A is unstable let * be an eigenvalue with Re(u) 0 and let x be

the corresponding eigenvector.

Then

x'Vx f te 2S.Re(.) (lCxl 2 + FxI 2 + IF2x1 2)ds.
0

If J is to be finite then this integral must be bounded as t-. For the

integral to be bounded, we must have is
Cx M 0, FIx - O, and Fx - 0

SO, -i- ilC
CAi'ix - pi-Icx x0

- i-I x  i-ix

-1,2

but this implies that L

ice ;l FlPF 2).

This must be true for all unstable eigenvalues of A, therefore

x (A) C pF1,F 2)

but if condition i) holds then by Lemma 3.3

;1(F,,F2)

so
x (A)-

which for any F2 is equivalent to

x +(A+B 1 FI) C R2(F1 ).

Thus (A+B1FIB 2) is stabilizable by DM
2 . So we have shown that if J is to

be finite then DM1 must choose F such that (A+B1 FI,B 2) is stabilizable.
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i Part 2

Part 2 There exists an F1 such that Re(X(AIR,(O))<0 and so

PR1 (o)r' ( x(A+Blp)i=0.

But by condition ii)
1R

C(O ;* C R* C R()
j2l'O '2 1 R()

Therefore

x (A+ B 1F1 ) n ;2 (F1 ,O) -

i.e., the system is detectable for such an F V The system is also stabi-

lizable for such an F1, therefore the follower's resultant control F2 will

cause the system (A+B +B2F2 ) to be asymptotically stable and < - and

J2<O.

Part 3

In the previous sections we have established that there exists an

Fl such that the triple

(C2 , (A+ B1 FI) ,B2)

will be stabilizable and detectable and that in order for the leader to have

a finite cost, such an F1 must be chosen. So, the optimal F*, if it exists,

must make the system stabilizable and detectable. It remains to establish

that a minimizing control exists. If we can establish that the minimizing

control, F*, if it exists, will be contained in a closed bounded set 3 and

that the leaders cost function is continuous with respect to F1 over the set ,

they by the Weierstrass theorem the minimum is attained in *i.e., 1

exists (24].

I
I

*,- "' I .2" . .. .. . - - . - .-.- - .... ..
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From this, Lemma 3.7 follows. From Lemma 3.7

31 C2 C j3

and the optimization can be done over a closed, bounded set over which the

cost function is continuous in F . By the Weierstrass theorem an optimal

stabilizing solution exists.

3.4. Verification of Conditions

Most of the conditions for the existence of a stabilizing solution

can be tested by well established techniques. The controllability of (A,B),

where B-B B2 is a concatenation of B1 and B2 , is readily checked as well as

the positive definiteness of the various matrices. Checking the condition

however deserves some further discussion.

The subspace 2 is the supremal (A,B )-invariant subspace contained

in 7Z(C 2 ). Algorithms for calculating a set of vectors which span a

supremal subspace have been considered by a number of authors, most notably

in [26], where attention is paid to the computation reliable components of

supremal subspaces by algorithms whose stability and efficiency can be insured.

The subspace R* is defined as the largest space W such that

I@Cl(F2) over all possible F2. That is, is the greatest lower bound, in

the sense of subspace inclusion, for the set of R(F 2 ). The inclusion of ;

within is to be tested for and so, although it is not clear how to

efficiently calculate Ri exactly, any computed subspace of R.* for which the

inclusion holds is sufficient to establish the desired result. Notice that
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unlike ;, there does not in general exist an F2 such that Rl(F 2) -R.

Relationships that do hold and are useful are

U il(Fl) C *r) ,(
F1  2

We might consider finding the R(F I) of maximum dimension. The maximum

dimension of R1 (FI) over all Fi is unique but there is no unique R1 (F1)

with maximum dimension. The calculation of a R2 (Fl) of minimum dimension (not

unique), and thus the corresponding R(F 1 ), can be done by the index and

decomposition algorithm of (27]. If j* is contained in one such maximum R1 (F1 )

then this is sufficient to establish the result. The union of a finite

collection of arbitrarily generated subspaces R(F 1) might also be considered.

As a check, for a finite set of arbitrary F2 and a candidate space W4C R, if

'-) R, - (F2) (3.4)

finite1 (
set ofI. F2

then 40-Rj since the right hand side of (3.4) is an upper bound for R*.

3.5. Conclusions

Conditions have been derived which are sufficient to insure the

existence of stabilizing feedback gains which satisfy the Stackelberg strategy.

These conditions are sufficient and less restrictive conditions may exist.

Although it is possible to insure the existence of a minimizing control for

the leader, the computation of an optimal F has not yet been dealt with and

requires investigation.

L

* t*
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CHAPTER 4

AN EXAMPLE OF THE IMPACT 6F THE INFORMATION STRUCTURE

4.1. Introduction

In noncooperative decentralized decision making, the information

available to the controllers has a far more significant role than in the

case of a centralized, or even decentralized, single objective control problem.

In Chapters 4 and 5 we will investigate the Nash strategy and the role that

the information structure has in the determination of the controls and the

resultant cost incurred by each controller. In Chapter 4 an example is

presented and discussed in which a decision maker becomes worse off when

more information is made available to him. This demonstrates that more

information is not necessarily better and, more generally, it demonstrates

that the choice of an information structure must be done in a systematic

fashion. In Chapter 5 such a systematic approach is developed. j

4.2. An Example

A problem in which there are many controllers, each having a J
different objective, can be formulated as a differential game with the

controllers acting according to a particular strategy. In a decentralized

problem, where each controller has different, incomplete information, the

information structure can have a significant and sometimes surprising impact

on the solution.

We examine a fairly realistic problem of a two-area electric power

distribution system in which the two area controllers determine constant

output feedback gains according to Nash strategy. An example demonstrates a
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situation in which one controller is worse off when more information is made

available to him.

This phenomenon has been noted previously [28], [29], and (30]

for static and one-step dynamic systems where the amount of information

is characterized in terms of the statistics of noisy measurements. We

consider a differential game where the controllers apply output feedback of

perfect measurements. The amount of information is characterized in the

following sense. Decision maker i (DMi) measures yM = Cixi where x is the

state of the system and C is a matrix of appropriate dimension. We say that

Clx is more informative than Y 2 C x if WC where R(A):
if i( )6I(Ci 2)

range space of the matrix A, i.e., y is composed of the measurements y (to

within an isomorphic transformation) plus additional linearly independent

measurement(s).

The effect of the information structure seems counter-intuitive

at first, but will oe readily understood once the significance of the

"availability" of information is explained in terms of the strategy being

employed.I
4.3. The System

We consider a two area electric power distribution system with a

tie-line interconnection. The model is based on [31]. Each area has a

steam plant and is modeled by a fifth order system, the states of which are

the deviations of the area frequency, the actuator position and the power

outputs of a high pressure turbine, an intermediate pressure turbine and a

low pressure turbine. The two subsystems along with the tie-line power flow

Ii I
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comprise an eleventh order system. The load disturbance of each area is

modeled by a first order system so the combined power and disturbance systems

comprise a thirteenth order model.

The model is the two interconnected system model for steam powered

plants derived in [31]. The model is a linearization of the system about an

operating point, describing the system behavior under real power and frequency

variations. The state vector is

x- valve displacement -area one

x- power displacement of high pressure turbine - area one

x- power displacement of intermediate pressure turbine - area one

x- power displacement of low pressure turbine - area one

x- frequency deviation in area one

x- tie-line power flow deviation - from area one into area two

x- valve displacement - area two

X- power displacement of high pressure turbine - area two

x- power displacement of intermediate pressure turbine - area two

x - power displacement of low pressure turbine - area two

x - frequency deviation in area two

x 2- load disturbance in area one

x 3- load disturbance in area two.

The controls are

u- set point adjustment in area one

u- set point adjustment in area two.

In case one, DM 1 measures x 5 and in both cases, DM 2 measures x 11. The

system can be represented as

4V



57

A -a 0 a3  0 b 0 0

a2  -a2  0 0
-X x + u 1 + u2 + v

0 aI  As  0 a3  0 b

o 0 0 AI 0 EI
Ad L.

where

-2. 0 0 0 0 0

4.75 -5. 0 0 0 0

A 0 .16667 -.16667 0 0 a1  0

0 0 2. -2. 0 0

0 .025 .02333 .035 -.1125 .08333

.023685
a2  [01 0 0 J 0 J 22.21439]0

0 d 0  -.01

-.08333[

4.

0
Eu . 01b- 0 E- .

0 
LC i.

0

The criterion and covariance matrices are

R-1. V [16 1
0 10 6]
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Q12 ,2  Q28 ,8 -. 3

QI3, 3  2 .28 Unit penalty on total area power generation.

QI4,4 Q210,10 42

Q15,5 -Q 211,11 100.

The Nash game will determine the gains of each of the area

controllers. We assume that in the steady state, each DM will meet the load

demand in his own area, i.e., the steady state power generated in area i is

equal to the steady state load in area i. For simplicity, the feedforward

gain from the area load disturbance is calculated such that if a step

increase in load were to occur then the controller for that area alone would,

in the steady state, meet the new demand. Thus these feedforward gains are

calculated from algebraic steady state conditions and are not considered as

control variables in the Nash calculations.

The problem faced by each of the DMers is to minimize his average

steady state cost when the system is subject to constantly varying load

disturbances.

The overall system is of the form

- Ax+ Blu 1 + B2u 2 + Ev

where

The dimensions of these submatrices correspond to the dimensions of R and z,

where i is the system state, z is the load disturbance, and v is a white noise

process with zero mean and covariance V.
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For i- 1,2 DM has measurement yW f C x and will apply linear

output feedback ui = -Fyi. DMi's cost function can be expressed [25]

Ji Mf l m E{x(t),Qix(t)+ ui(t)'Riiui(t)}t-). v i i i

which, with feedback is

J, W lim '/2E(x(t)'(Qi+ CiFiRiiFiCi)x(t)}.

If we define the matrix

S - lim E{x(t)x(t)'}
t-O V

then
Ji = 

1/2 tr{S(Qi+ CiFiRiiFiCi) }.

The feedback gains F* and F* are Nash equilibrium values if1 2

J (F*,F2) < J1 (F1 F*) for all admissible F (4.1)

J 2 (F*,F*) < J 2 (F*,F 2 ) for all admissible F2. (4.2)

By application of the matrix minimum principle (32), [331, and [251,

the following necessary conditions for the Nash equilibrium output feedback

gains are obtained, i1,2.

0 = - R F C SC'- B'PiSC' (4.3)

0 = Qi + CiFiRiiFiCi + A'P + P i (4.4)
i iii i i i

0 - EVE' + !S + SA' (4.5)

where
- (A-BIF1C1-B2F2C2).

Each controller's primary concern is to minimize the frequency

deviations in his own area. The cost functions are symmetric in the sense

that each controller penalizes his own area frequency deviations, his area

power generation deviations and his own control actions.I
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In the example, we compare the Nash equilibrium solutions for two

information structures. In case one, each DM measures his own area frequency

deviations, and in case two, DM1 has no measurement available for feedback

and DM2 still measures his own area frequency deviation.

In order to compare solutions for different information structures,

there must exist a unique solution for each case. We have established that

the Nash equilibrium solutions exist and are unique for this problem by direct

numerical calculations of the reaction curves of each controller. In order to

make such graphical analysis, it is necessary to restrict the number of

measurements available to each controller for feedback. Also, some simplistic

assumptions in defining each controller's criterion function are necessary to

insure uniqueness of the Nash equilibrium solutions, i.e., the explicit

appearance of a penalty on the tie-line power flow deviation in the criterion

functions would result in multiple equilibrium solutions under these particular

information structures. Although it is not penalized, the steady state tie-

line power flow deviation would in fact be zero under constant load distur-

bances as a result of the constraint that each controller alone must, in the

steady state, meet a constant load demand in his own area and the fact that

the resultant overall system is stable.

These assumptions regarding the criterion function and the number

of available measurements are needed to produce a clear, simple example and

are not meant to accurately represent a situation that might be encountered

in practice, particularly not for such a small scale system. It is in Lge

scale systems in which such restricted information availability can be

expected and in which the impact of the information structure becomes most

important.
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For comparison we have also calculated the solution for the

Stackelberg strategy for the information structure of case one with DM as
1

* leader. With the Stackelberg strategy, the controllers do not determine

their controls simultaneously, as with the Nash strategy, but rather one

*controller, the leader, will first determine his control and announce his

decision to the other controller, the follower, who will then determine his

control knowing what the leader's control will be. The leader, in deter-

mining his control, takes into account the follower's subsequent optimization.

It is assumed that the leader will not deviate from his announced controls

and that the leader knows the follower's cost function and is thus able to

calculate the follower's reaction to his controls. For a given information

structure, the leader will do at least as well as he would playing according

to the Nash strategy. Further details and discussion of the Stackelberg

strategy can be found in (2], [8], [7], [34], and [6].

[ The solutions are shown in Figure 4.1. The reaction

I curves of the two DM's are plotted (where ui -ki- -kifi, fi is the fre-

quency deviation for area i) and the various solutions are indicated. RCi

indicates DMi 's reaction curve, Nl is the Nash equilibrium solution for case

one, N2 is the Nash equilibrium solution for case two, and S indicates the

Stackelberg solution with DH. as leader.

Table 1 summarizes the various solutions and the related costs.

I
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Table 1. Resulting Costs for Example

CONTROL GAINS COSTS (xlO 
- 5)

DM' DM2  DM1  DM2

* Nash +.40815 +.40815 6.29 6.29
(case 1)

Nash 0 +1.02695 3.49 11.4
(case 2)

Stackelberg -.199 +1.4171 3.19 14.49
DM1 : leader

Going down the table we can see that DKIs cost decreases as we

go from case one to case two and from case two to the Stackelberg case. It

so happens for this problem that DM2's cost is increasing as we go down the

table. This is not always the case; examples can be constructed in which

both DM's are better off when less information is available to one of them and

it is also possible that both DMers can have lower cost when using the

Stackelberg strategy than when using the Nash strategy (2].

4.4. Discussion

One might reasonably expect that, regardless of the presence of

other controllers, if more information is made available to one of the

controllers, then that controller would be better off. Why, in case one

of the example, could not DM1 simply ignore the available information,

reducing the problem to that of case two? The answer to this, it turns out,

is the key to understanding the phenomenon.

The Nash equilibrium conditions, inequalities (4.1) and (4.2) can

*equivalently be thought of as follows. Each controller is performing an

optimization, minimizing his cost function over his entire set of admissible

1.
L , _ ± _ i , . . . . ,, . . . . . .. . . . . .. . . . . .. . . . . . . . . .. . .. . . .. . .t . . .. .. .. .
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controls, subject to the constraint that the other controller is performing3

his minimization over his entire set of admissible controls (i.e., over all

linear feedback rules for the set of available measurements). In order to

have a Nash equilibrium, the optimizations must be consistent; each DM's3

control must be the optimal over his entire admissible set of controls given

that the other DM is applying his Nash control, i.e., inequalities (1) and (2)

must hold. Since each controller is assuming that the other controller is

optimizing over his entire set of admissible controls, they are each con-

strained by the consistency requirement to optimize over their own entire set

of admissible controls. So, inherent in the Nash inequalities is the constraint

that each DM must optimize over all admissible controls; measurements cannot

be ignored.

This requirement for consistancy is what constrains the controllers

to use the information in a way that could possibly be detrimental to all of

the controllers. Is it possible for a controller to avoid this requirement,

allowing him to ignore information? Yes, with the Stackelberg strategy, this

is accomplished by the leader. By simply allowing for a precedence of

decision making, the Stackelberg strategy frees the leader of the requirement

that his control must be optimal for the given reaction of the follower. This

not only allows the leader to ignore information, if appropriate, but, as

demonstrated in the example, he can use the information to his advantage.

In this chapter, we have presented an example which demonstrates

that if a dynamic system is to be controlled by more than one controller, and

the controllers are acting according to the Nash equilibrium strategy, then

a change in the information available to one or more of the controllers can

IL
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1 have a surprising effect. In particular, making more information available

to one of the controllers does not necessarily bring about improved

performance.

In the next chapter we will consider techniques for changing the

information structure used in a Nash strategy with the goal of improving some

measure of the overall system performance.
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CHAPTER 5

INFORMATION DESIGN

5.1. Introduction

In conventional single criterion optimizations, the design of an

optimal information structure generally reduces to either the determination

of the most informative structure which satisfies certain measurement con-

straints or to precisely defining the tradeoffs between the cost of acquiring

information and the value this information has in terms of its effect on the

performance of the control system [35], [36], and [37]. As was demonstrated

in the previous chapter, the effect that the information available to one

of the controllers has on his performance or on the performance of the other

controllers is not quite so self-evident when the decisions are being made

according to the Nash strategy. Also, the definition of overall system

performance must be made precise if it is to be used in the design of a

"better" information structure.

In this chapter we will develop an approach to the design of the

information structure that will provide improved performance for the overall

system. In order to do this, the design of the information structure for a

system in which the controllers are choosing their controls according to aI Nash equilibrium strategy must incorporate a precedence relationship, i.e.,

the Nash equilibrium solution for the controls is done for a given, specified

information structure. The information design is not itself a part of the

Nash equilibrium conditions but rather is done taking into account the

* subsequent optimizations being performed according to the Nash strategy. In

this sense, the designer of the information structure is behaving as the
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leader would in a Stackelberg strategy when his control is the information

system. The optimization for the information structure must append the sub-

sequent optimizations of the individual DMers.

5.2. The Design Technique

The particular formulation that we will consider is as follows.

A linear system with m controllers acting on it is represented by

m
- Ax + Z B iiu V (5.1)

The ith controller has measurements

Yi Cix (5.2)

and will apply a linear output feedback

-"u i a -F i  F -i C ix (5.3)

in an effort to minimize the cost function
tf

J3 = El-/2 ' +'2f (x'Qix+ E u R u )dt}  (5.4)
xo  to j-i i

where the expectation over x is to remove the dependence of the solution on* 0
the initial condition.

The information structure is determined by the output matrices, Ci,

in (5.2).

We will develop the information design procedure for the case of

linear, static output feedback control (5.3). The extension to the case of

the controllers using dynamic compensation of fixed order is straightforward

and conceptually equivalent (38].

The Nash equilibrium output feedback gains

J. U -FlY

1.
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are defined as those gains which satisfy the inequalities
S

" " "i-l i'*"",F F*) <  (F ,... * F F* ... ,F*)

for all Fi , i-1,2,...,m. (5.5)

For a given, fixed information structure, (5.2), the necessary conditions

for the output feedback gains can be determined by use of the matrix

minimum principle [321 and [33]. We will develop these first, in terms of a

fixed information structure, and then develop the information design stage.

The cost functions (5.4) can equivalently be written

t f

J 'Af tr{QiX}dt + tr{KifXt } (5.6)
t
0

where m

,=jil i jiij jj

and X satisfies

X -AX + XA (5.7)

X(t) - x E{x x'}m
i- (A- !BFC.)

The Hamiltonian is formed, appending the matrix differential equation (5.7),

Hi(X,AIFj;J-Il...m) - I/2 tr(QiX}+tr{Ai(;X+XA)}], i-l,...,m.

From the matrix minimum principle, the minimization of (5.6) with respect

to F in accordance with the Nash strategy (5.5) yields the following

necessary conditions

Ai - VQ-A 'Ai-AiA (5.8i)

Ai(tf) Kif
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6. 8Hi
- R F C XC BiA XCi  i- 1,2,...,m. (5.91)

3Fi 0 i i i ii i

If the feedback gains were constrained to be constant throughout the

interval [totf) then the condition Fi - 0 would be appended in the Hamiltonian

which would result in equation (5.9i) being replaced by

aj tf 3Hi_ tF f dt -0,
i t i

0

i.e., for fixed Ci,

aio R F,- - PC, B A PC (5.91')

where t f

P= f X(t)dt.
t

0

:For a given information structure (5.2), the control gains must

satisfy (5.7), (5.81), and (5.91) for i1,...,m. These equations are a

two-point boundary value problem and must be solved iteratively. Since

expressions for the gradients are known (5.9i) or (5.9i'), gradient dependent

schemes for solving the equations are applicable. Convergence of any approach

cannot be assured a priori in that the existence of an equilibrium solution is

itself not assured.

We now have a characterization of the behavior of the individual

controllers in thier determination of feedback gains for a given information

structure. The second phase of the problem, the design of the information

structure, can now be developed.

We assume that the information matrices will be chosen to minimize

Fa cost function

I-
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t f
Jo E( f (X'Qox+ Z u'R u.)dt+xfK x

fX t jai J o( fOf
0

It is assumed that this cost function, in some sense, represents an overall

system cost which is to be minimized by the choice of the Ci matrices. This

might, for example, be a Pareto-optimal cost function agreed on by all of the

individual decision makers, i.e., if they agree on the relative importance

of their individual costs as expressed by the a iIs then

m m
J o  ZaW zaJ, i> 0, E a l.ial i i ' 1-

Alternately, the overall cost function might be a Lyapunov function in which

case the information structure is chosen to provide stabilization under the

subsequent control actions.

The optimization for the Ci's is done with each Ci held to a fixed

allowable maximum rank. Therefore as a special case, one may allow each

Ci to attain a maximum rank equal to the dimension of the system thereby

admitting full state feedback as an allowable information structure. Note

that full state feedback will not necessarily result as being the optimum

structure since, as was demonstrated in the previous chapter, more informa-

tion is not necessarily better. More realistically, there may be only a

limited set of measurements available to begin with, e.g., certain states may

not be directly measurable at all or only certain states are measurable by

certain controllers, allowing for conditions such as geographic separation.

These conditions can be treated by assuming the measurements to be in--t4e_.

form

Y- CiDix, iml,...,m

where Di is a fixed matrix and, as before, Ci is the matrix to be determined

in the optimization.
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Certain special cases are of interest. In particular, if for

some i, an initial guess for the information structure is taken to be Ci I,

0 j O, j~i, then decision maker i is faced with a conventional full state

feedback optimization and the remaining controllers are constrained to take

no action. This provides a convenient starting point for the iterative

calculation of the information structure.

The necessary conditions for the information structure design are

presented in the sequel.

For the given Jos the Hamiltonian is formed to append the necessary

conditions which characterize the Nash equilibrium solution for the feedback

gains.

H = 1/,2tr{(Q + E CFjR F C)X)
0 0j=l j oj j i

Sm m
+ Z li 2 tr{P [-Q -A'A -AA-E(C'F'RFC -C'F'B'A A B F C)1
J-1 oj i Ai=l i ii i ii2 ii j -j i i i

.m
+ Z 80£ [R R7FC XC'-B'A XCr''

I m m

+ /2 tr{r [(A- J LI BJ FJ CJ )Z+X(A'- o j J Fj BJ ) ] } .

By the matrix minimum principle the necessary conditions are found to be

the following;

3H

oj C XC'

E(-RkF C Po C'+ BAkP C')
k.... j j j i k o

+ Rjj ojC XCj - Bj oXC j -i,... ,m (5.10)
jio .joCi

1.
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ro - - "-Q+ m '' .j.aH mS+ Z C'F'R F C
0 ax 0 j =1j C £ Jo

m .

'At-A B 8 C9,] + r + (5.11)'1 --,o B ot

where (
i(A- i Bj Fj j )

--r 0 f K of

3Hl m
k- k

o ~ 9 AP - "- o-PoA'+ E (B F C Po +P C'o'B'

, Po(to) 0, 09 1,...,m (5.12)-B9,8oC 9 X-XC'8'Bo P 9B()-

3H I m
0F X - F R F C P-F B'A -P AB F B I3 iii i i j jiii oj i ij oj oj ji i

+ OiRiF C + FIR.iioiCiX + 8oBIAiX-FB'r X, 1-1,...,m. (5.13)

i 8' R F 0+o

Or, for the optimal time-invariant C,'s, equation (5.13) is

replaced by

31 t fa

3C- f 3C 0 dt- 0 (5.13')
i t 1 1

0
which follows from appending the conditions

iU 0.

For a given information structure, the feedback gains are found

by solving (5.7), (5.81), and (5.91) for il,...,m. This provides us with

the Fig X, and the A1, i-i,...,m. The equations (5.11) and (5.12) are then

solved for r and Po for l,...,m where the algebraic equations of (5.10)
0f

are solved to eliminate the 8oi for i-1,...,m. The gradient (5.13) or (5.13')

g~TT7
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can now be evaluated, new C i's determined, and the process is repeated

until convergence is obtained or an adequate improvement in performance

is attained.

The amount of computation is quite significant but, fortunately,

these computations are done once only and are done by only one decision maker

at the time the information structure is being chosen. These computations

are transparent to all of the individual controllers since they merely

determine their feedback gains for the information structure which, at that

time, is determined and fixed. Thus, the precedence relationship of the

optimizations isolates the individual controllers from the major computa-

tional task of the information structure design. This is a similar effect

to the advantage found in the sampled data formulation of Chapter 2. The

case in which the available information is restricted, as represented by

-i C iD ix

is conceptually equivalent and the necessary conditions are developed along

identical lines.

For the case in which the problem is defined over an infinite

horizon, the necessary conditions for the output feedback gains and for the

information structure matrices reduce to a set of algebraic equations.

For this case, the final necessary conditions reduce to the

following.

For a given information structure, the output feedback gains

must satisfy

- - m
A' +AA Q+~CF'R F C 0o (5.14)i' ii j-lC j i J
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L +LA' +X = 0 (5.15)
0

8Ji
0O= R. RiFiCLC'-'AC

F .- BiA LC' (5.16)
.i

where
m

(A- E B F.C.)

for i= 1,2,...,m.

The conditions for the optimal information structure are

m
r!+ 1'r + E {cla8>Fj F C -B'A )' c1R j-AjB )8 CJ}

m
+ Q + Z C'F'R F C W 0 (5.17)

0 j=l J j ojj j

m I
0-RF.C LC!- B'rLC' + R. a C LC' + E (-B. Ak IRF C P C}1 (5.18)oij J j i iji k=l j kjj jjkj

which is solved to eliminate the i 's,

m
0 = AP -P A' + Z [B F C P +P C'F'B' ]- B a C L-LC''B (5.19)

k=l kkkZ kkk (5.19)

aJ'
ai, m

0 C - F'RiiFiCiL-j= E [F'.R. 3 F C'P-F'A P -P AJ B i F i ]

ac ' FC + +iii j1 j i i i Ji
+ iiiF C + FIRiCiL + a!BAiL- F'B'FL i = ,....m. (5.20)

An iterative procedure is possible using the gradient information

supplied by (5.20).

Equation (5.18) is used to remove the dependence of (5.17), (5.19),

and (5.20) on the j 's

a -R7 FR FC LC- P yLC'LC -1
j j ( C- rCi B V C k o i j j J iJ kil[Bi1 k~~i Jiki (i

and if C is not full rank, the equation is still solvable since

R(C LC') - 6(c

for L>0, where R(.) denotes range space.

.LL.
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5.3. An Example

For a simple example to demonstrate the improvement in performance

attainable through changes in the information structure, consider the

following.

The system

= Ax + Blu1 + B2u 2

is second order with u1 and u2 both scalar

A[ [ 10 _0
Bl [ B2 ]

ui" -flyi f fiCix .

The information structure is given by

-c 2 -- - -(1 1].

The cost functions

J J 1/2 E{f (x'Qix+uiRiiu)dt}0

are specified by

0 10001

Q2 [1000 0]

and
Rii =i i=1,2.
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For this given nominal information structure, the behavior of the controller

is best illustrated by calculating their reaction curves. One to the

symmetry of the problem, the reaction curves are symmetric with respect to

one another across the 45° line. Figure 5.1 illustrates the reaction curves

where fi(f denotes controller i's optimal feedback gain as a function of

fj i, i-1,2. The intersection of the reaction curves is the point which

satisfies the Nash inequalities. At the Nash equilibrium point,

Jl J2 = 47

for which
J 0 2

J l + 1I/2 2  47.

Now let us consider the effect that a change in the information structure can

have.

We will consider variations in the information structure para-

meterized in terms of one parameter as follows:

Let

C1 = [sin(O) cos(O)]

C2 a[cos(e) sin(6)].

Notice that by parameterizing the information structure in terms of e, we

are maintaining

Variation of 6 is a rotation of the measurement vectors in state space.

The reaction curves and equilibrium points for a few values of 8

are shown in Figure 5.2.

In particular, the optimal value of 6 is found to be 6- -45° for

which Jo -16.3. The reaction curves for this case are shown in Figure 5.2c).

0I
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8 = 450
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Figure 5.2a. Reaction curves for e -45.
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For this information structure the costs incurred by each controller and the

overall cost are all reduced to approximately one-third of their values

for the original nominal information structure which corresponds to e- +45O.

5.4. Conclusions

The optimization for the information structure must append the

necessary conditions which characterize the subsequent calculations for the

Nash equilibrium solution. The continuity of the Nash equilibrium conditions

with respect to the parameters of the information structure is not insured

and requires further investigation if any assurances are sought for a well

behaved, convergent algorithm. In fact, an algorithm for the calculation of

Nash equilibrium output feedback gains for a given information structure with

conditions which guarantee convergence would be significant in its own right.
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7- CHAPTER 6

CONCLUSIONS

The decentralized control problem where the individual controllers

have different goals has been considered. We have focused on the role of the

Stackelberg strategy, particularly for its application for the coordination

of many controllers.

Several issues related to the applicability of the strategy have

been dealt with, resulting in tractable, efficient algorithms. The structure

of the solution to a sampled data formulation has been exploited to obtain

particularly efficient solution techniques.

The existence of solutions satisfying the Stackelberg strategy

cannot in general be assured a priori. Conditions sufficient for guaranteeing

the existence of a solution satisfying a Stackelberg strategy have been

j developed. These are merely sufficient conditions and there is need for

further development.

The impact that the information structure can have on a solution

satisfying the Nash strategy has been illustrated by means of an example.

The example serves as motivation for the next section in which an approach

to the design of the information structure has been developed which exploits

the precedence nature of the Staclcelberg strategy. The information structure

alone is manipulated in an effort to coordinate the subsequent actions of

* I the controllers. As with most coordination schemes using the Stackelberg
strategy, the activities of the leader or coordinator are transparent to the

individual controllers.

Lt
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